Tetrahedron Letters No.39, pp.3351-3352, 1969. Pergamon Press. Printed in Great Britain.

A SIMPLE SYNTHESIS OF SULPHONYL CYANIDES

J. M. Cox and R. Ghosh

Plant Protection Ltd., Jealott's Hill Research Station, Bracknell, Berkshire.

(Received in UK 9 July 1969; accepted for publication 17 July 1969)

In a recent communication (1), the first synthesis of a compound containing the elusive sulphonyl cyanide moeity was described. Thus, on treatment with nitrosyl chloride and pyridine, the phosphorane (I) gave toluene p-sulphonyl cyanide (II). Although compounds of this type do not arise from a variety of direct approaches (1), it appeared to us probable that they should result from the treatment of sulphinate anions with a cyanogen halide (2).

$$CH_3$$
 SO_2
 SO_2

Accordingly, when an aqueous solution of sodium toluene p-sulphinate was treated with excess cyanogen chloride at room temperature, the corresponding cyanide (II) was obtained in excellent yield. This material, m.p. 49-50° / Tit. (1), 46-48° analysed correctly for C₈H₇HO₂S and displayed spectral characteristics identical to those reported previously.

The generality of the method was established by saturating, in situ, an aqueous solution of a variety of sodium sulphinates with cyanogen chloride. (See Table)

In the cyanogen halide series, the polarity of the carbon-halogen bond is such that, whilst cyanogen chloride almost always reacts with displacement of the chloride anion, the corresponding bromide sometimes acts as a source of positive bromine (3). It was not surprising to find that on treatment of sodium toluene p-sulphinate with cyanogen bromide, we obtained only the corresponding sulphonyl bromide (III).

Product, RSO ₂ CN	т.р.	b.p. and $n_{\overline{D}}$	Overall Yield % and Method*
4-сн ₃ .с ₆ н ₄ -	49-50 ⁰		89;A
с ₆ н ₅ -	19-20°	73° (0.1 mm.)	92;A
4-c1.c ₆ H ₄ -	56-58 ⁰		97;B
4-Br.C ₆ H ₄ -	96-98 ⁰		63;B
4-F.C ₆ H ₄ -		69-70° (0.08 mm.)	42;B
		$n_{\rm D}^{19}$ 1-5172	
4-(CH ₃ .CONH).C ₆ H ₄ -	163-164 ⁰		93;▲
i-си ₃ 0.с ₆ и ₄ -	67-68°		87;B
3-CO ₂ H,4-C1.C ₆ H ₃ -	137°		22;B
G-C1,3-NO ₂ .C ₆ H ₃ -**	81-82°		35;B
n-C ₆ E ₁₃ -		75-77° (0.2 mm.)	15;C
		n _D ²⁴ 1.4390	
æ ₄ -***		д <mark>24</mark> 1.4281	93;B

^{*} The sulphinic acid salts were obtained by a variety of methods: A, commercially available; B, by reduction of the corresponding sulphonyl halide; C, by treatment of an alkyl magnesium halide with sulphur dioxide. The yield is that obtained overall from the sulphinic acid or salt, the sulphonyl halide or the alkyl halide respectively.

REFERENCES

- 1. A.M. Van Leusen, A. J. W. Iedema and J. Strating, Chem. Commun., 1968, 440.
- 2. c.f. J.S. Meek and J.S. Powler, J. Org. Chem., 1968, 33, 3422.
- 3. H. A. Hageman, "Organic Reactions", J. Wiley & Sons, Inc., New York, 1953, Vol. VII, p. 202.

^{**} Decomposes during recrystallization from petroleum.

^{***} Not purified; decomposes over a period of hours at room temperature.